How to increase detection of dysplasia in Barrett’s esophagus?

Presented by Alexander Meining

Institution Interventional & Experimental Endoscopy (InExEn), Ulm University, Germany
Shortcomings of all (!) imaging studies on Barrett’s

Studies have been performed in ...

- ... high experts centres,
- ... evaluating new tools,
- ... with individual and commercial pressure,
- ... selected patients (pre-test likelihood) with a fairly
- ... high incidence of neoplasia

⇒ Diagnostic accuracy may not reflect a real world situation
⇒ Some things might still be helpful in our daily practise
What might influence detection rate?

- Chromo
- NBI (et al.)
- High-Def
- OCT
- CLE

- Time?
- Sedation?
- Flushing?
- Caps?
- Experience

Sophisticated tools
=> many data

Basic tools
=> sparse data
Chromo-endoscopy for detection of Barrett’s dysplasia?

Ngamruengphong S, Gastrointest Endosc. 2009

Figure 3. IY (%) for individual studies and pooled data for detection of dysplasia with MB chromoendoscopy compared with standard RB (random-effects model, $P = .06$); the test for heterogeneity was $\chi^2 = 33.22$ ($P < .0001$, $I^2 = 75.9\%$).
Acetic acid?

- Acetic acid \rightarrow acetowhitening after application \rightarrow disappearance related to neoplasia
- 142 sec. \rightarrow sens. 98%, spec. 84% for HGD/EMC

Longcroft-Wheaton et al., Endoscopy 2013
Chromo or NBI for detection of Barrett’s dysplasia?

Qumseya et al., Clin Gastro Hepatol 2013
NBI targeted biopsies or HD-WLE with random biopsies?

• International, randomized, crossover trial involving 123 patients
• Dysplastic areas detected: NBI 30% vs. HD-WLE 21% (p=0.01)
• “Biopsies could be entirely avoided in patients who have only regular appearing NBI surface patterns”

=> 30% dysplasia in a screening and surveillance population???

Sharma et al., GUT 2013
Confocal laser endomicroscopy for detection of neoplasia in Barrett's esophagus: a meta-analysis

Diseases of the Esophagus 2015 Wu et al
OCT/ volumetric laser endomicroscopy
OCT/ volumetric laser endomicroscopy (vs pCLE) for dysplasia in BE

Cadman et al., GIE 2015
Comparison of various image modalities?

- Apart from direct comparison, there is no great difference on which respective method is used. Sens/Spec 90%, NPV<90%
- Diagnostic yield is increased by about 30% with almost any “new“ method
- Policy of targeted biopsy is reasonable!
- However, despite all these innovations ...

... there is no red-flag-technology, and
... obtaining systematic biopsies in addition to targeted biopsies is still required!!
Basic tools?

- Significantly more lesions in specialized Barrett’s units
 Cameron et al., GIE 2014
- Inspection time correlates with HGD/EAC-detection rate (> 1 min per cm)
 Gupta et al., GIE 2012
- Transparent cap helps to detect significantly more Barrett (non-dysplastic BE)
 Cheng et al., WJG 2014
- Effect of sedation? Flushing with water or anti-foaming agents? => No published data
Non-endoscopic detection of dysplasia in Barrett’s

Ross-Ines et al., PLOS Med 2015

<table>
<thead>
<tr>
<th>Patients</th>
<th>Total Number</th>
<th>TFF3 Positive</th>
<th>TFF3 Negative</th>
<th>Sensitivity (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All BE patients (≥C1 or ≥M3)</td>
<td>596</td>
<td>476</td>
<td>120</td>
<td>79.9% (76.4%–83.0%)</td>
</tr>
<tr>
<td>Segment length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥C1</td>
<td>533</td>
<td>434</td>
<td>109</td>
<td>79.5% (75.9%–82.9%)</td>
</tr>
<tr>
<td>≥C2</td>
<td>416</td>
<td>349</td>
<td>67</td>
<td>83.9% (80.0%–87.3%)</td>
</tr>
<tr>
<td>≥C3</td>
<td>320</td>
<td>279</td>
<td>41</td>
<td>87.2% (83.0%–90.6%)</td>
</tr>
<tr>
<td>Dysplasia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDBE</td>
<td>372</td>
<td>294</td>
<td>78</td>
<td>79.0% (74.5%–83.0%)</td>
</tr>
<tr>
<td>Indefinite for dysplasia</td>
<td>46</td>
<td>34</td>
<td>12</td>
<td>73.9% (58.9%–85.7%)</td>
</tr>
<tr>
<td>LGD</td>
<td>77</td>
<td>63</td>
<td>14</td>
<td>80.5% (69.9%–88.7%)</td>
</tr>
<tr>
<td>HGD/IMC</td>
<td>101</td>
<td>85</td>
<td>16</td>
<td>84.2% (75.6%–90.7%)</td>
</tr>
<tr>
<td>Patients having two Cytosponge tests</td>
<td>107</td>
<td>95</td>
<td>11</td>
<td>89.7% (82.3%–94.8%)</td>
</tr>
</tbody>
</table>
Tethered Capsule using OCT for screening for Barrett’s dysplasia?

Gora et al., Nature Med 2013
Conclusion

• Everything that offers more information helps!
• High-Def-WLE, acetic acid, an experienced examiner and time might be most relevant
• Quality parameters for detection of Barrett’s dysplasia???
 – ADR/AMR?
 – Time needed?
 – Rate of interval lesions?
 => NO! (International Consensus; Sharma et al Gastro 2015)
• Problem: many colonic adenomas, CRC-screening is widely practiced ⇔ few dysplastic Barrett’s, no screening programs, only small clinical trials and observational studies
Further recommendation for reading

BRIEF REVIEW

The Clinical Consequences of Advanced Imaging Techniques in Barrett’s Esophagus

David F. Boerwinkel, Anne-Fré Swager, Wouter L. Curvers, and Jacques J. G. H. M. Bergman

Department of Gastroenterology and Hepatology, Academic Medical Centre, Amsterdam, The Netherlands